The Next Tentacle Ceph on ARM

Federico Lucifredi Product Management Director, Ceph Storage Platform, IBM | Red Hat

Peter Pouliot Senior Developer Evangelist, Ampere Computing

June 4, 2025

me! me! me!

Things I worked on

Ceph Storage **Ubuntu Server** Landscape **SUSE Studio SLES SMT** Ximian Red Carpet Man (I)

Peter Pouliot

ppouliot@amperecomputing.com

- I live in Stoneham, MA and am a lifelong New Englander originally from Rhode Island.
- I studied Philosophy for my undergraduate degree (RIC), and Telecommunications Security/Digital Forensics graduate degrees (BU)
- At Ampere Computing, I enable Open Source Software ecosystems with Aarch64 servers in the datacenter, and enabling Aarch64 native OSS server-based cloud computing.
- Previously at Microsoft, I helped to maintain OpenStack integration with Microsoft's virtualization platform Hyper-V and was Microsoft's OpenStack subject matter expert, running the largest CI/CD infrastructure within the OpenStack community for 5+ years.

one more thing

Supported CPU Architectures

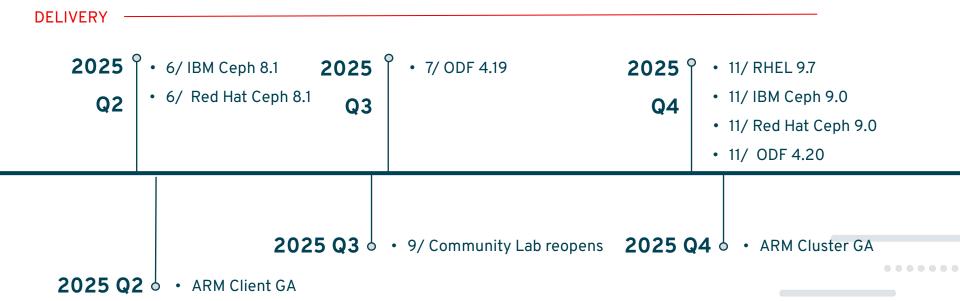
RHCS is supported on Intel and AMD x86-64 microprocessors. IBM POWER and S390x CPUs are supported only as clients, but not as clusters.

Supported Host Operating Systems

6/25

Supported CPU Architectures

RHCS is supported on Intel and AMD x86-64 microprocessors. ARM64, IBM POWER and S390x CPUs are supported only as clients, but not as clusters.


Sunnartad Hact Operating Systems

outlook

Community

punch list

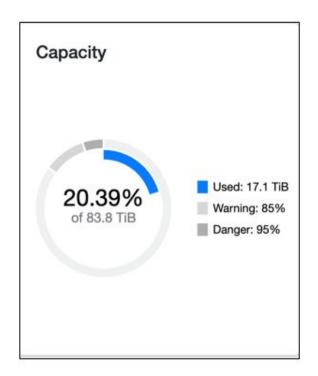
- Community Lab reopening
- More test automation
- Tuning for ARM
- Optimization for ARM extensions
- ARM Reference architecture

SBC distributions

- Armbian
- Ubuntu
- Debian
- Fedora
- RHEL

performance

Ceph Cluster Overview


Ceph Cluster Inventory

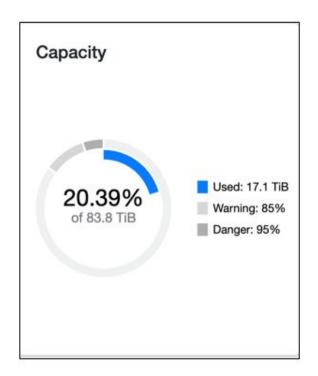
	Ampere
CPU	Ampereone
Memory	8 x 64GB DDR5 512 GB per node
Disks	8x 3.5 TB Micron 7450 NVME's per Node
NIC's	1 x 100Gb Private and 1 x 10Gb Public per Node
OS	Ubuntu 24.04
Ceph Version	Squid 19.2.0 with OSD's on Docker Containers
Client Nodes	3 Mt Kims

3 Node Cluster with Ampereone setup for Performance benchmarking

Ampere 3 Node Cluster – Ceph details

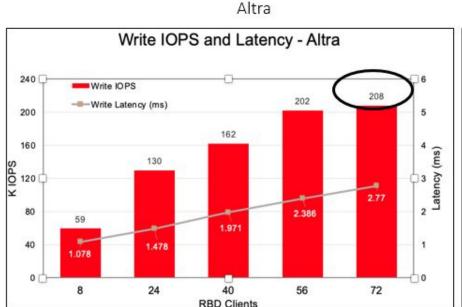
Inventory	
3 Hosts	3 🕏
3 Monitors	3 👁
2 Managers	1 0 1 0
24 OSDs	24 📀
4 Pools	4 🕏
6145 PGs	6145 🔮

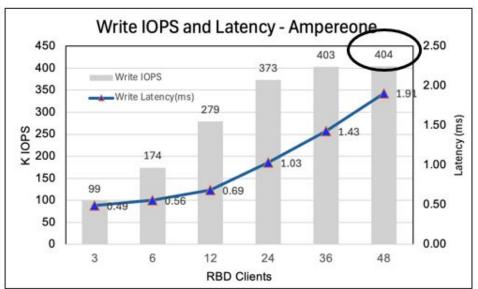
Ceph Cluster Block Storage Performance


Ceph Cluster Inventory

	Ampere
CPU	Ampereone
Memory	8 x 64GB DDR5 512 GB per node
Disks	8x 3.5 TB Micron 7450 NVME's per Node
NIC's	1 x 100Gb Private and 1 x 10Gb Public per Node
OS	Ubuntu 24.04
Ceph Version	Squid 19.2.0 with OSD's on Docker Containers
Client Nodes	3 Mt Kims

3 Node Cluster with Ampereone setup for Performance benchmarking

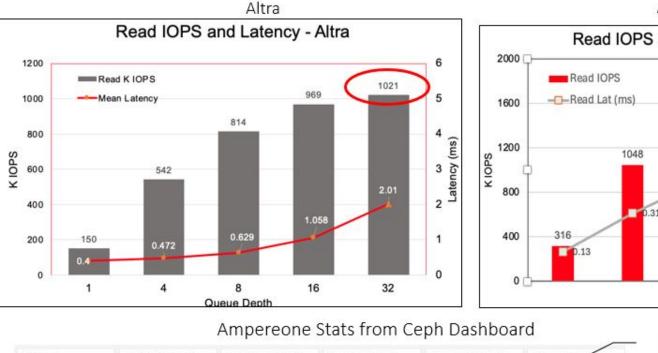

Ampere 3 Node Cluster – Ceph details

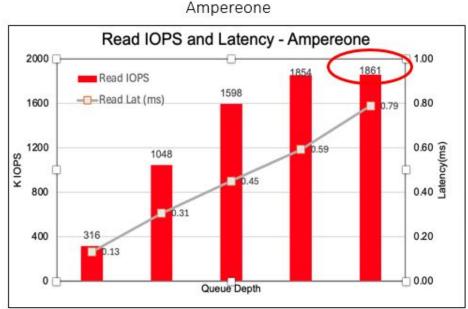

Inventory	
3 Hosts	3 🕏
3 Monitors	3 👁
2 Managers	1 0 1 0
24 OSDs	24 📀
4 Pools	4 🕏
6145 PGs	6145 🔮

Ceph Cluster Block Storage Performance

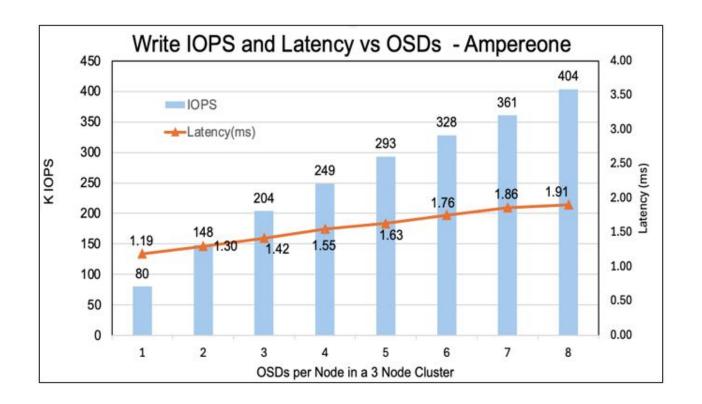
Block Storage Write Performance Comparison

Ampereone

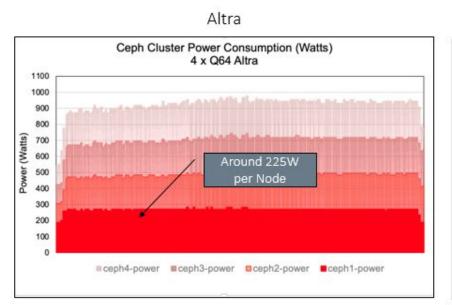

Ampereone Stats from Ceph Dashboard

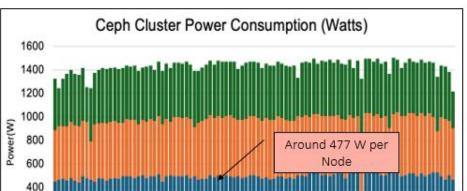


4 KB Random Writes reached a maximum of 400 K IOPS in Ampereone compared to 200 K IOPS achieved with Altra (Repl = 2)


Block Storage Read Performance Comparison

Ceph Incremental Performance with OSDs


Compare and Contrast our results


https://ceph.io/en/news/blog/2024/ceph-a-journey-to-1tibps/ (Jan 2024)

Number of Nodes	3	3
CPU	3 x AMD 9454	3 x Ampereone
Cores/Threads	48 Core/96 Threads	192 Cores
Memory	3 x 192GiB DDR5	3 x 512GiB DDR5
Disks	3 x 10 15TB NVME Drives	3 x 8 3.5TB NVME Drives
Write IOPS	248 K IOPS (Repl 3)	404 K IOPS (Repl 2) 277 K IOPS (Repl 3)
Read IOPS	1.9 M IOPS	1.86 M IOPS

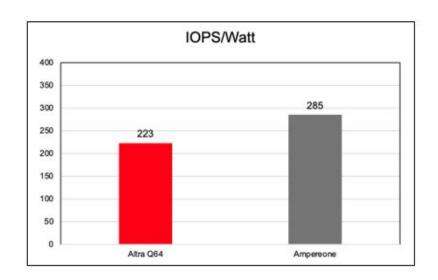
Ceph Cluster Power Consumption

Ceph Cluster Power Consumption (4k Writes)

Ceph2 Power

■Ceph1 Power

Ampereone


- · 4 x Altra nodes delivered around 200 K IOPS while consuming around 900 Watts
- 3 x Ampereone Nodes delivered around 400 K IOPS while consuming around 1430 Watts

200

■ Ceph3 Power

Ceph Back End Performance

	Altra (q64)	Ampereone (192)
CPU Cores/Threads	64 Cores	192 Cores
CPU	56%	55%
Mem	16%	18%
Physical Disk IOPS	40k-45 K	100 K
Total Power	224 W	477 W
CPU Power	84 W	228 W

THANK YOU.